A PARIS ASTRONOMER OF 1290

Fritz S. Pedersen

1. The treatise "Sicut dicit Hermes in libro De natura dierum(!), Homo est nexus dei et mundi" (Thorndike & Kibre 1963 col.1484) is a literal commentary on a version of the well-known canones Arazilis on the Tables for Toledo, "Quoniam cuisque" (T. & K. 1268; Carmody 1956, no.31,1a: "Can.Az." or "canons" in the following). I only know this commentary from the manuscript in Florence mentioned below, and have not seen any further references to it. I believe it to have been composed A.D.1290 in Paris, and probably for university teaching, though it does not say so. I also think that it constituted the main source of John of Sicily's slightly younger and more wide-spread commentary (Duhem 4,6-10; Poulle, DSB), an edition of which will appear shortly. Since the present text may be longer in the coming, I take the opportunity to present enough details from it to make it recognizable in other manuscripts. I hope that anyone who has further information will care to tell me of it, c/o TGLM (Njalsgade 90, DK-2300 Cph. S).

The text is referred to by folios in the manuscript, supplemented by paragraph numbers from my transcript, for future use. "Sample A" means §16 below, section A. For John of Sicily, folios of Par.lat.7266 (P) are referred to; on occasion, reference is also made to the Scripta Marsiliensis super canones Arazilis (Erfurt CA 20394, printed in part by Curtze 1900, 349-53), which I believe to be a collection of excerpts from John (cf.§15 and note to Sample F).

2. Manuscript: Firenze, Bibl. Medicea Laurenziana, Ashb.211. Vellum, cm. 22½ x 15½, ff.IV+306, 13th-14th century. Several hands, Italian of 14th century unless otherwise noted; insertions, however, mostly 15th century.

Microfilm provided by library.

Ir-IIr (blank except for shelf-mark & stamp) IIv (index, 18th c.): Anonymus. Tabulae Astronomicae (inter quas nonnullae Alphonsi Regis)/ -- Commentarii in quaedam verba Hermetis De natura dierum, et quaedam alia Astronomica et Astrologica./ Azzachel......... Varia Opuscula Astronomica, Astrologica, Chronologica./ (another coeval hand:) ?Sèc.XV (corr. to "XIII", modern) Codex ms. membranaceus. IIIr-v (blank except for "211") IVr (rules for houses, etc., mentioning Cecco d'Ascoli:) Astrolabii notitia iudiciorum astrologiae... IVv Nota quod introductoriorum astrologiae quaedam pro- dunt narrative... (1¼ page mentioning Alcabitius, Proleum's Centiloq. and Quadr., Albumasar, mag. Thadeus; in other hands, on a writing by Gerardus de Brolio on Aristotle's books on animals, reported to be owned by one mag. Jacobus Baronis, surgeon of Bologna; and on an Albumasar owned by the same).
1r (top, hand uncertain, upper line almost cut away:) <--> Azzachelis.
1ra-62vb (writing 13th-14th c., possibly French:) Inter cetera veritatis...
divides zodiacum per (custode:) numerum annorum. (John of Sicily, Expós.
super canones Azzachelis; broken off in section on mean motion tables, p
178vb; the sequel is "num. ann. totius revolutionis et numerus quotiens").

63ra-160vb (our text; hand of 13th-14th c., still possibly French:)
Sicut dicit Hermes in libro De natura dierum(!). "Homo est nexus dei et
mundi, supra mundum et subnexus deo". Haec propositio quantum ad omnia 3
membra declarari potest; et primo quantum ad membrum primum, quo dicitur
quod homo est nexus dei et mundi. Quaecumque enim distantia si connecti ha-
beant...(ends in mid-column:) "Et si kardagas declinationis": in hoc capi-
tulio docet auctor invenire <-->

161ra-173ra (Canones Azzachelis:) Incipiant canones in motibus caelest-
tium corporum ≪azzachelis≫. Quoniam cuiusque...usque in perfectionem 60
graduum. (Paragraph numbering in margin, 15th c., corresponding to one on
63r ff. I ignore this numbering.)

173v-175r (faint, possibly a legal document) 175v-176v (astrological
diagrams, and notes and recipes in Latin and Italian. Italian cursive of
14th-15th c.)

177r-180v (Theoriae planetarium Gerardi:) Circulus eccentricus...bicubi-
tum vel tricubitum. 180v-181r (addition on eclipses, not in T&K:) Quanti-
tas solis dicitur quantitas... 181v-184v (theory of sun, moon, and eclips-
es, not in T&K:) Sol dicitur habere suum eccentricum... 184v-185r (on pla-
nets and tides, Italian cursive, 14th-15th c.) 185v (rota,"calitatis sig-
norum")

186r-306r (several series of tables, among which: 186r-195v, mean motion
tables for Toulouse, etc.; a list of radices for Paris, and one headed 1320.
Hand probably Italian. Notes of 15th c. in Italian cursive. - 196r-264v,
Toledan tables in various hands, mostly one of 13th-14th c., with notes and
supplements in Italian hands, and 15th c. notes written in Spanish. - 265r-
30lr, various tables in Italian hands, 14th-15th c.) 306v (½ column, not in
T&K:) Animodar id est investigatio...

3. Summary of text. Recording a selection of numbers which recur in sev-
eral contexts, and those of the larger notes which digress from the current
subject-matter. The chapter-division here given is just for convenience; it
also recapitulates the order of paragraphs in the canons, a list of which
can be found in Millás 1943/50 p.37-42. The canons are cited by paragraphs
from an uncritical text which I hope to print for reference within a year's
time.

63ra-64ra (§1-10) Preamble, incipit "Sicut dicit Hermes"(§2 above).
Authorities cited: for man's place in world, Hermes, Aristotle (Ethics 3),
Algzazel, Alpharabius; for division of sciences, Aristotle (De An. 3); for
astronomy, Moses, Abrachis, Ptolemy (Almagest), Albumasar, Albategni,
Azzachel.

CHRONOLOGY:

64ra-73ra (§11-68) Conversion of dates, inc. "Unde quia tempus compara-
tur ad motum sicut mensura ad mensurabile".

The common example is A.D.1291, July 10th, noon, expressed as: Christian
era, 1290Y+6m+10D elapsed; Arab era, 689Y+6m+12D, or 244348D, elapsed; also
in Iezdegerd and Seleucid eras. - Note on sexagesimal number-notation in
tables (67ra-b,§41).
TRIGONOMETRY OF EIGHTH SPHERE:

73ra-78rb ($§69$-107) Finding sines and solar declinations from arcs, and vice versa, inc. "Cum cuiuslibet gradus etc. (:Can.Az.52): superius usque nunc determinavit".

Notes on proportional reckoning, and on calculation with fractional numbers, mainly for use in linear interpolation ($74vb,$§$80; 76va,$§$94). The declination table of Almeon is recommended ($§$ below).

80va-90ra ($§119$-171) Finding right and oblique ascensions from arcs on ecliptic, and vice versa, inc. "Cum elevationes signorum in circulo directo (:Can.Az.72): postquam auctor docuit per declinationem".

Tabular values for oblique ascensions, when used, are those for the 7th climate, but the individual latitude employed is $48°13'$, said to be for Paris (Sample A). - Notes on: the shadow function as used for computing oblique ascensions at any latitude ($84vb$-$85vb,$§143-8); on subtraction of arcs modulo $360°$ ($88va-b,$§165); and on the defects of interpolation (Sample B).

90ra-99ra ($§172$-223) Finding: day-arc and day-length from solar longitude; hour-of-day from observed solar altitude, and vice versa; ascendent from hour-of-day and vice versa; houses. Inc. "Cum portionem circuli directi (:Can.Az.98): docet inventionem ascensionum".

Some values repeated in the examples: (a) Summer solstice; day-arc for 7th climate, $238°56'$; arc of 1 seasonal hour, $19°54'1''(40')$; day-length $15°56'm$; meridian solar altitude, for Paris, ca. $64°$; observed altitude, $50°$; hour after sunrise, ca. $4°3'm$ seasonal; ascendent, Vir $10°10'$, or Vir $1°42'$ on a less reliable method. (b) Night following: arc of 1 hour of night, $10°15'(20')$ [not $10°5'5'']; hour after sunset, $3°(4°m)$ seasonal; ascendent, Aqu $4°49'$; 10th house, Sag $2°20'$. (c) Equinox; meridian altitude for Paris, $41°47'$; observed altitude, $30°$; hour after sunrise, $3°15'm$ seasonal. - Note on division of numbers by 12 ($91va,$§184).

99ra-100va ($§224$-32) Finding shadow function from solar altitude ($30°$), and vice versa, inc. "Si autem umbram per solis altitudinem (:Can.Az.122): postquam iam docuit per horas invenire".

Directions for finding squares and square-roots of numbers with fractions, with a dating to A.D.1288 Aug.5 (Sample C).

PLANETARY MOTIONS:

100va-112ra ($§233$-97) Ecliptical longitudes of sun, moon, node, and superior planets, with ample explanations on planetary theory in each case, covering, but not identical with, the Theorica Planetarum Gerardi. The inferior planets are treated perfunctorily. Inc. "Post motuum superioris cir-
culi (:Can.Az.127): postquam superius determinatum est de sinibus et declinationibus et de aliis sphaeræae octavæ".

All the examples are for the Arab date 688Y+8 months elapsed, or A.D.1290, Sep.5 at noon, and are reduced to the meridian of Paris (11°30' or 46m, East of Toledo: 104rb,§257). The motion of the eighth sphere is set at 9°22'20" here and elsewhere, computed for A.D.1289 running, or A.H.689 running (106rb,§266, cf.149va,§505). This should be added to the true longitudes obtained, which are:

- Sun: 5° 9°39'43" (106rb,§266), or within Vir 20° of ninth sphere;
- Moon: 5°11°25'38" (108ra,§274), for Toledo, by mistake;
- Node: 5° 3°10'28" (108vb,§277)
- Mars: 8° 9°56' 1" (111rb,§289).

The time chosen was in a few hours of the solar eclipse calculated later on. - Notes on: lunar years, for entering tables (101va-b,§240); conversion between different meridians (102ra,§241; 104rb-va,§257-8); machine to show the motion of Mercury (Sample D).

The examples use elements from the longitude calculations above, and are thus valid for the same date and place. The stations are visualized as the points of contact with the epicycle of its tangents from the earth, as in the Theorica Planetarum.

When sought during A.H.689 running, they are found as follows, for Paris, equation of time taken into account. Solar: mid-eclipse at 688Y7m29d, or A.D.1290 Sep.5, 19h55m after noon of our Sep.4 (139va,§446). 9;51 digits eclipsed (140ra,§448). Beginning of eclipse, 18h50m p.m. (145va-b,§480).

Lunar: mid-eclipse at 688Y7m14d, or A.D.1289 Aug.22 ("21",text), 15h38m after noon of our Aug.21 (143vb,§470). 4;52 digits eclipsed (143vb,§472). Beginning of eclipse, 14h14m p.m. (145vb,§481). The eclipses correspond to Oppolzer no. 5957 and 3867, both in fact visible in Paris. - Notes on: equation of time, where the sun is simplistically assumed to run evenly in the ecliptic (120ra-121va,§347-52); criticism of canon on parallactic table (Sample F); multiplication by certain numbers with fractions, to find diameters of luminaries and earth's shadow (134ra-b,va-b,135va-b:§420,422,427); magnitudes of total eclipses, annular solar eclipses (136vb-137ra, §432-3).

145vb-146vb (§482-4) Tables of fixed stars and of geographical coordinates, inc. "Si autem in quo gradu (:Can.Az.209): postquam auctor determinavit de hac passione quae est eclipsis".

The examples are for Aldebaran (used at 151va+, cf. to Sample H), and for the longitudes of Paris (40° from W) and Toledo (281° from W), thus with the usual time difference of 46m.

146vb-149rb (§485-503) Aspects and projections of rays; risings and settings of planets; visibility periods. Inc. "Cum autem projectiones radio-
rum (Can.Az.211): auctor hic intendens determinare". A repeated example is for Saturn in Psc 15°, not seen elsewhere.

149rb-150ra (§504-6) Motion of eighth sphere, inc. "Cum motum accessionis et recessionis (Can.Az.221): postquam auctor iam docuit aequare vel invenire vera loca stellarum".

The value is found to be 9°22'22" for A.H.689 running, or about A.D.1280 running, and is essentially the one used throughout the text. Our author is brief and does not mention any theory but Thebit's.

150ra (§507) Remark on "centrum" of planet (Can.Az.223).

150ra-151va (§508-17) Angular velocity, "buth", of sun; time of sun's entrance into a given interval (vernal equinox used); remarks on "revolutio anni natalis/mundani". Inc. "Cum autem both solis (Can.Az.224): hic intendit artem invenienti horas noctis per stellas".

The text departs from the date A.D.1280, 5h34m after noon of Sep.4 (thus "Sep.5°"). This is the time of mean conjunction which was used in §438 as a step in finding the solar eclipse. The next vernal equinox (Toledo, eighth sphere) will then occur A.D.1291 March 24 ("25°"), 6h44m p.m., according to mean motion; with true motion the time is March 23 ("10 Kal.Apr.") 7h33m p.m. (11h after sunset, text). The author does not carry through the reduction for the motion of the eighth sphere.

The example uses the latitude of 48°40' for the middle of the 7th climate, and Paris is not mentioned. Key values: Aldebaran, latitude 5°10'S, longitude Tau 28° (see to Sample H); day-arc, 214°50' or 14h19m; meridian altitude, ca.56°; observed altitude, 35°; hour after sunset, 6h51m seasonal, if the sun is in Vir 20° (this value also at 100va+); ascendent, Can 27°.

- Notes: the tabular longitudes are now about 112 years old and should be up-dated; correction of results by instrument (both in Sample H).

154vb-160vb Calculation of sines, mainly those at intervals of 15°, inc. "Quia in huius operis etc. (Can.Az.236): quia auctor superius, determinando de sinibus et declinationibus, demonstrationem sinuum et declinationum omisit". Of this text, the part contained in 154vb-156vb (end of column) is found appended to John of Sicily's work in several manuscripts.

For the attribution see §15 below.

Notes: directions for finding square-roots and squares of numbers with or without fractions, using linear interpolation (159ra-va, §598-9). The procedure for squares repeats that of Sample C, though not in wording; the square-root method improves upon the faulty one, ibid., cf. also §10 below. This section is unfinished in our manuscript, since the scribe left off just after having begun the chapter on declinations; but at least, not much text was left to be commented on.
4. Location etc.: The treatise was evidently meant for use in Paris, since this is the pervading instance of an individual place, and the only one the author has been at a liberty to choose (e.g. Sample A $139). Also mentioned are Toledo, Cremona, Arim, and Gades Herculis/Alexandri, as points of reference for the tables, or taken over from examples in the canons. The last part of the text (150ra+, $508+) is silent about Paris, using just the 7th climate (e.g. Sample H $522); I cannot say whether this indicates a change of source. In any case the latitude of 48°013' for Paris happens to be Albattani's value for the 7th climate (Toomer 1968 p.109).

5. There are two proper datings in the text, one of them yielding a lower date at A.D.1289 Aug.5 (Sample C $230), the other one implying the year A.H. 689 or about A.D.1290 (Sample H $525 with note). Probably these years should be taken as running. - In the examples, one set of dates seems to be centered around the solar eclipse calculated for A.D.1290 running, Sep.5 (cf. 115rb+, 100va+, 150ra+). I suppose that the eclipse calculation is meant as a prediction, thus constituting an upper date for the eclipse section if not for the rest. The only other prevalent date, in the section on chronology, is the later one of A.D.1291 July 10: this may be simply arbitrary, or may indicate that this section was composed later. - Thus, significant parts of our text were probably composed during the first half of 1290, or within a few months to either side. It may also be fairly certain that the eclipse calculation was done at an early stage of the work, and that the other examples showing values coupled to it were composed or at least revised by our author himself.

6. At the risk of just repeating what can be said of any literal commentary, I shall briefly note some compositorial features of this one. It may be taken to consist of sections, each of which contains lemma, theme, division, paraphrase of canon, and numerical example, in this order, except that the division and/or the example may be left out, and paraphrase and example are often intermingled. Notes may occur everywhere except just before the theme. - Samples B and E below contain entire sections, on which the following may be to some extent verified.

A theme, with the typical word "docet", sometimes "determinat", "exsequitur", etc., occasionally has a recapitulation, thus, "Postquam auctor docuit...docet hic...". - The division may run "et facit duo, quia primo theme1, secundo theme2, ibi lemma2". Theme1 pertains to the running section, whereas lemma2 and theme2 are left pending, to be resumed when a later section is to be introduced. Since the sections occur in the order of the ca-
nons, the last lemma plus theme currently pending will be the first to be resumed. Any such later section may of course contain a division of its own. Any division may have several layers like the one cited, subsequent ones often beginning "adhuc primo..." and dividing theme of the preceding layer: thus the theme proper to the paraphrase following will be theme of the last layer. In one way or the other, John of Sicily may reach 15 levels of division; I have not counted those of our text. The paraphrase mostly begins with "et dicit auctor quod", "sententia capituli est", "sententia...stat in hoc quod" or variants. The verb "exponatur" is rare; "quaedam exponantur" is used in the few cases where the paraphrase degenerates into scattered lemmas with their several explanations. When mixed with a numerical example, the paraphrase may begin "sententia capituli ponatur in exemplo", etc. The null paraphrase is "patet", which may occur inside a division. Examples are typically introduced by "verbi gratia", "esto quod", "exemplum...sit istud", or combinations. Demonstrations on diagrams are here considered as notes, since they are rarely thus introduced except when mixed with numerical examples. Notes are of varying contents, as instanced in §3 above. They may begin with "nota quod", "notandum/advertendum/intelligendum est quod", sometimes prefixed with "ad evidentiam/intellectum huius capituli" or similar. As mentioned, notes may stand almost anywhere in the text. When a note is used as reason for a subsequent layer in a division, its usual form is "et quia...ideo..."; and the common notes beginning "causa autem quare" of course tend to stand somewhere after the paraphrase. Apart from that, the form of notes does not seem to depend much on their position. Recurrent subjects are theory and definitions, early in a section, and the author's presuppositions, "supposita", without a fixed place. Among the weighty notes are those containing or consisting of demonstrations on diagrams, sometimes signalled by "ad quod ostendendum" or some variant of "demonstratio". Objections such as "contra diceres tu...dico quod..." occur (Sample C), but our author incorporates no entire questions.

7. Since obviously the notes constitute our author's most individual (even if scarcely original) contribution, a few of their conspicuous features will be presented in the next paragraphs, notably where the author speaks in the first person and/or states an opinion about the canons or tables. These features should not be taken as representative of the text.

8. Apart from the authorities cited in the Preface, no doubt at second hand, our text quotes pretty few different sources. A Theorica planetarum is presupposed for the section on planetary motions (101ra,§235); and a lot
of quotations, explicit or not, and never with an author's name, serve to
confirm that as usual this is the so-called Theorica Planetarum Gerardi.
Occasionally our text develops into (or reproduces?) a commentary on it, as
in Sample D. - The common *kalendarium linconiensis*, of Grosseteste, is
used in date conversion. - *Ptolemy* is only mentioned in connexion with
his value for the obliquity of the ecliptic (23°51', probably from the To-
ledo Tables or the canons); *Almeon* is used as a label for the value of 23°
33', and for the table of solar declination found with the Toledo Tables,
which is repeatedly recommended by our author (e.g. 77va, §100), following
the canons. - On the theory of the motion of the eighth sphere, the reader
is referred to *Thebrit* without much further comment (150ra, §506). - *Euclid*
is cited three times for the theorem of Pythagoras, once for a congruence
theorem.

9. Vaguer parallels may indicate various levels of information. A lot of
simple statements are probably meant to make users recall the Sphere of
Sacrobosco; he may also be the *quidam* with whom our author is at issue twice
(102va-b, §247; 137rb, §434) concerning the relationship between the solar de-
ferent and the ecliptic. On the whole the reader is supposed to be familiar
with integer arithmetics, the common circles on the sphere, and basic com-
putus, as given by the elementary parts of Sacrobosco's works with the aid
of Grosseteste's calendar. Explanations are, however, once more offered for
the more advanced parts of these subjects, such as for square-root extrac-
tion (Sample C §228, echoing Sacrobosco's Algorism), for right and oblique
ascensions, and for other subjects shared with the canons. - The author
used an *astrolabe* for computation, and perhaps expected the users to ($12
below). - Some patchy knowledge of *Euclid*, or extracts of him, turns up
in the citations ($8 above) and in the terminology of the demonstrations
(cf. Sample A §138, similar triangles).

There are other common authors and subjects which the author does not
know or does not care to present. Had he known the geometric algebra of Eu-
clid, he would hardly have bothered to take the extra square in Sample C
§229. He had not read John of Seville's Algorism, or not the fractional
parts of it, where he could have found a good solution for the task of Sam-
ple C §230. He had no use for proper spherical trigonometry such as offered
e.g. by Albattani or the Lesser Almagest; his rectilinear demonstrations
(e.g. Sample A §138) may descend from a tract on the sector figure, but I
have not seen a contemporary source. On the whole, our text shows no strik-
ing resemblance to most of the works from which John of Sicily was to sup-
plement it, such as Albattani, Alfargani or Campanus; there may be echoes of the Lesser Almagest (Sample E) and of William of England's Astrologia, whether directly or not. The spherical models for the planets, ultimately from Ptolemy's Planetary Hypotheses and current in the time, were incorp­orated by John (cf. Duhem 4, p.7-8). Such models are once alluded to as if known ("licet omnes orbis sint pervit luminis et diaphani...", 102va,§247), but apparently they were considered to be outside the scope of the treatment.

Among works and subjects on the same general level as this text, only the Theorica Planetarum is well attested as known to the author and users. One may even wonder how well the users were expected to know it, since most of the subject-matter is here again fully treated with a view to calculations. Much space is also given to fractional arithmetics, mainly sexagesimal calculation, and to the workings of arithmetical proportions, with many examples. This is mostly occasioned by the ubiquitous need for interpolation in the tables and elsewhere (Sample B), a procedure also used for other purposes, more or less aptly (Sample C, cf. above and §10), and thus apparently a standard tool supplanting much of the doctrine of the works on fractional arithmetics, none of which is ever cited. — In short our treatment is theoretically traditional but seems to bear witness to a self-contained practice of calculation. On a flight of fancy, if Peter of Dacia's expres­sion "apud aequantes" (§14 below) refers to a real group of persons, our author would belong to them. He just calls himself a "plain astronomer",§13.

10. The text shows no consistent intention to criticize the canons and tables, but it does discuss them on various occasions. Numbers may be deliberately checked for one purpose or the other: thus the author uses the solar equation tables for verifying that the mean conjunction tables contain the longitudes they purport to (117rb,va-b,§331-2), and finds only a slight discrepancy. He sometimes uses instruments to check his calcula­tions (§12 below), in one case revealing a corruption in his text of the canons (Sample H). Where he advises the reader of how to verify theory or calculation by alternative means (e.g. Sample F, §379 end), of course he may or may not have done so for himself. — More often comments are evoked by accidental confrontation between results, notably in Sample B, where a comparison of the result with the tabular value leads our author to discuss the applicability of interpolation, and later on to dissuade the reader from using several similar canons. The faulty square-root extraction of Sample C §230, used once later (155rb), disappears as soon as the results might have been compared to the sine tables; the interpolation method introduced in-
stead ("ad hoc autem inveniendum hanc artem adinveni labore multo", 159ra) is then wrongly thought to give better results than the tables do. Other numerical re-calculations, according to rules in the canons, may also lead our author to discern slight discrepancies with the tables, e.g. as concerns right ascensions, houses, and finding hour-of-day from solar altitude when this is compared to the inverse procedure. He computes the motion of the eighth sphere from both available tables (Toomer no.81, iii and ii), finds that the results differ, and decides to recommend the first table (150ra, §506).

Where calculation is not involved, the occasions for discussion are harder to guess at, and the likelihood greater that the arguments are taken over from other sources. Simplified geometrical reasoning is used for guessing at the precision of the canon that implies a constant proportion between the lunar diameter and the diameter of the earth's shadow (135ra-va, §424), and of the canon for finding the eclipsed part of the solar disk from that of the solar diameter (133va,§416; 136va-b,§431). The discussions are loose and partly colloquial and may well be our author's own. The same thing can be said about his critique of the Theorica Planetarum on a detail in the theory of Venus and Mercury (111rb-va,§292). Practical experience may have caused the pertinent criticism of the canon for correcting parallax (Sample F §380), including the argument from continuity. On the other hand, the recommendations of the Almeon-table (§8 above) were no doubt prompted by the canons, or by common opinion, as was certainly the note on updating the stellar table (Sample H §525).

11. The workaday problem of correcting particular copies of the tables is implied where the canons offer numerical methods as alternatives to the tables. Our author only once expressly considers the possibility, in connexion with the shadow-table (85rb-va,§147, "si velis igitur corrigere tabulam umbrae..."), giving instances of re-calculating two values. This is concluded with "haec igitur est compositio tabulae umbrae", which may show that correction was considered on a par with the more general task of constructing tables from the parameters. This possibility is mentioned a few more times, with rules lacking numerical examples, e.g. for tables of sines, right ascensions (76rb,§132), and oblique ascensions (85vb,§149-50; 86va-b, §156), prompted by the canons in the last case. In the last chapter, where sines are computed (154vb+), we are told "sed de isto ponam exemplum et do-cebo te etiam componere tabulas sinus, domino concedente" (158va). This is fulfilled for a few values, subsequently compared to the existing table of
sines, as mentioned in §10. Indeed, most of the other comparisons there
touched upon may as well have been meant as running checks of copies whose
textual basis was not too secure. — It may be said that John of Sicily
multiplies the precepts for constructing or verifying tables, also includ-
ing approximative methods suitable only for verification. Neither he nor
our author apparently did construct their own tables: thus in fact our
author made do with the oblique ascension tables for the 7th climate (Sam-
ple A $141), and with the tables of houses "ad civitatem Toletanam, quia
ad prae sens alias non habui" (98rb,$220).

12. Our author repeatedly mentions that he has used some instrument to
verify computations, notably in Sample H §526; later on he concludes this
by affirming "hoc autem capitulum et eius operatio aqueata sunt prae cis
per tabulas et per instrumentum verax, et ideo non sine labore" (154va,
§534). The only such instrument anywhere named is the astrolabe, which was
probably what the author used: indeed, having calculated the equatorial arc
risen since sunrise, he adds "et idem invenies per astrolabium si instru-
mentum verax sit" (92va,$292); a computation of the ascendent from the hour
of night is concluded with "et quod istae operationes verae sint, probes
per astrolabium, vel per aliquid instrumentum, sicut feci" (95ra,$206); after
the reverse computation he just refers to an instrument (98va,$221). Users
obviously understood such brief statements (including one more about a de-
tail of operation, 154ra, §533), whether they had practice on the astrolabe
or not; in any case the operations were standard in treatises on that in-
strument. — Some unspecified instrument is presupposed for taking alti-
tudes: of stars, for finding geographical latitude; and of the sun, for
finding the hour of day by subsequent calculation. All this is implied by
the canons, and any common instrument may have served. — On the "instru-
ment" for Mercury see Sample D. — In general cf. Benjamin & Toomer p.422-3.

13. The author states his position towards judiciar i astrology five or
six times. Three of them must suffice for entertainment:
(147rb,$488, on proiectio radiorum:) Sive autem istud sit verum sive non,
nescio, nec hoc credo esse negotii astronomi; sed artificis superioris
forte interest hoc considerare.

(147va,$489, same subject:) In isto stat sententia canonis, sicut mihi vi-
detur; sive autem hic aliquid veri dixi vel non, non assero, quia in hac
materia parum vidi et nihil audivi: transcendent enim hoc negotium considere-
rationem simplicis astronomi.

(151va,$517, revolutio anni natalis:) ideo partes istas volenti iudicare
committo, cum ipse magis noverit ad quid valent.
Elsewhere one has: a short statement in the Preface; one referring parallax computation to astrology when not used for eclipses; and one like the last one cited. - I have seen a few similar remarks in William of England's *Astrologia*, but other technical texts usually do not bother much about setting off their subject-matter against astrology. Our author may just speak the truth in professing his ignorance: he did not condemn astrology, or he would not, earlier on, have given the astrological houses 13 columns of thorough and unreserved documentation. John of Sicily leaves out the present kind of remarks, or states them neutrally.

14. A point of terminology: In eclipse calculations our text pretty consistently employs the terms "argumentum latitudinis semel / bis vel secundo / tertio / quarto aequatum" for the moon's distance from the node, according to mean motion / in true syzygy / corrected for parallax in longitude / for parallax in latitude, respectively. Peter of Dacia uses about the same expressions in his *Eclipsorium* (§50-1, in one of the two manuscripts, late 1290s?), characterizing them as "argumentum latitudinis quod *apud aequantes* vocatur arg. lat. primo aequatum". As I mentioned in my preface to that work, the terms are also found in some of the eclipse predictions for 1292-5 included in a copy of William of St Cloud's Almanach (*Vat.lat.4572*), and later on in John of Lignières. They are, however, not from the canons, nor have I seen them in any other earlier work. I submit that they are peculiar to Paris as concerns our period, and possibly even to a restricted environment: indeed, John of Sicily leaves them out or paraphrases them arbitrarily.

15. As mentioned, John of Sicily is likely to have drawn upon our text, almost exhaustively, and with extensive supplements. Instances of correspondence are given in the Samples. A few further salient points are noted here; a detailed comparison will appear later.

John's numerical examples appear to show two sets of dates, one of them at 1291 Sep.1, noon (or A.H.689 complete + 8°+ 6'; noted by Poulle in DSB), used throughout the sections on chronology and planetary longitudes; the other one at A.H.690 complete, or about the start of A.D.1292, used for computing the next equinox, and for precession according to Thebit, which is found to be 9°22'49" (P,214rb). John computes a solar eclipse on 1295 Nov.8" (P,208rb-va; Oppolzer 5970) and a lunar eclipse 5½ months earlier (P,210va+; Oppolzer 3875), both sought for within the Arab year 694. Apparently this was the first time since 1290 where John could succeed in finding both kinds of eclipse visible in Paris within one Arab year; I gather
this from the eclipse list with William's Almanach (§14 above) and from an impression of Oppolzer's diagrams, but it should be checked. Incidentally, John's lunar eclipse time is about 2 hours later than in the William list, so apparently the figures were arrived at independently.

The precession value John really uses in the examples on planets is one of $9^\circ22'10''$ ("supponendo ipsum ad praesens", P 181rb; value used once more). This may simply have been taken over from the parallel passage in our text (106rb,§266), which shows the value $9^\circ22'20''$ for A.D.1290 running. John does not seem to use his own 1292-value (above); indeed elsewhere he puts no definite value to the precession, but supplies a lengthy discussion of it (Duhem 4,8-10). - This is probably because he knew of William of St Cloud's observations concerning the precession, made on 1290 March 12 (Duhem 4,17) and issued with the Almanach in 1292. At P,216ra (and in Scripta Maritima, M,118vb), on finding the precession, one reads

Et si velis hoc idem subtilius agere, cum inveneris meridianam solis altitudinem minorem altitudine aequinoctiali per aliquot minuta - ut si altitudo meridiana in aequinoctiali fuerit 41 graduum et 12 minutorum, in 12'a vero die Martii reperias meridianam altitudinem esse 40 graduum 54 minutorum - vide differentiam inter eas, quae est 18 minutorum; et pro qualibet minuto addesuper meridiam 12'a diei unam horam, et habebis tempus et horam quo sol erit in aequinoctiali. Ad illud ergo tempus quaeque locum eius in octava sphaera, et operare ut dictum est.

The observed solar altitude is the same as William's; for the co-latitude of Paris William gave $41^\circ10'$, which John does use elsewhere. John never quotes William's final result of $10^\circ13'$ for the precession. A likely guess is that John composed his work from start to finish, learning of some of William's results soon enough to eschew the obsolete value for the precession, and to compose his long digression on the subject; but nothing except John's partial silence seems to show that this happened before 1292.

All this does not serve to date John more precisely than was done by Poulle, that is, probably at late 1291 and 1292, the dates of John's examples, and at least after Sep.1290, where our author's eclipse calculations were outdated. It does show that our text does not depend on John. Indeed, apart from their probable ages, our text is ignorant of William's results, giving a different latitude for Paris and knowing only of Thabit's theory of precession (and possibly Ptolemy's, Sample H §525). For two further indications, if any are needed, see to Sample F and H.

It is harder to show that our text is not simply John's own earlier version of his commentary. The most conspicuous argument seems to be one of style: indeed, John's mode of writing tends to be ornate, never using col-
loquialisms, nor the personal form of address (e.g. Sample G), nor phrases of modesty such as the ubiquitous "salvo iudicio melioris". On the other hand, the plain style of our text extends to the last section on sines; and in the manuscripts where a fragment of this section is appended to John's work (§3 above), it is preceded by a note implying that John is not the author. — One may also notice that our author professes his detachment from astrology, and treats some of the relevant sections perfunctorily (§13 above), whereas John does a lot to fill out the missing parts. Thus, if our author is John, he had got up the subject, or the recipients' attitudes had changed drastically, or he had left Paris. — This may not disprove that our text is a reportation of an earlier oral version by John. Of course I should like our worthy author to be Peter of Dacia, but there is no positive evidence whatever to prove this.

16. Samples of text. Italics are used for the wording of the canons, or what may count as it, without warranty for precision.

A. B4ra-vb; diagram re-drawn from one at B3vb. Text of the canons, see also Curtze p.349. — Finding oblique ascension of Aries, at the horizon of Paris, from sines. — For the geographical latitude \(\lambda \) and the declination \(\delta \) of the end of Aries, the difference \(p \) of the right and oblique ascensions of Aries can be found as

\[
\sinus(p) = \frac{(\sinus(\lambda) \sinus(\delta))/\sinus(90^\circ-\lambda))(150/\sinus(90^\circ-\delta))},
\]

where the sines are to base 150 as elsewhere in the canons. The diagram and rectilinear demonstration of §138 seem purely mnemotechnical and are typical of our text, cf. §9 above. — John of Sicily (P,165ra–va) has two demonstrations, one of them resembling our piece supplemented with an extra pair of similar triangles, the other one using the cadas-figure (theorem of Menelaos; neither term mentioned), as is done e.g. in the anonymous contemporary text printed by Curtze p.360ff. No relationship between these demonstrations is expressly recognized. — Our text begins with a division and a paraphrase of the canon (B3ra–va,§34-7). Then:

(§138) Demonstratur\(^1\) autem hoc negotium communiter sic: sit colurus solsti-
tiorum circulus ABCD; polus autem meridianus sit C, septentrioralis autem A; colurus autem aequinoctiorum\(^2\) sit linea AC, aequinoctialis autem DB\(^3\); latitudo regionis sit arcus AE, cuius sinus est linea EF; residuum latitu-
dinis de 90 sit arcus BE, cuius sinus est linea EG vel FK\(^4\); declinatio arietis arcus BH, cuius sinus est linea HL vel IK; residuum declinationis gradus de 90 sit arcus AH, cuius sinus est linea IH parallela aequinocti-
ali, transiens per gradum zodiaci scilicet ultimum arietis, cuius ascen-
siones quareruntur. — Hic igitur sunt duo trianguli, quorum primus est KFE maior, secundus KIM minor, quorum anguli sibi invicem sunt aequales: quae igitur proportio KF ad FE, eadem est KI ad IM. Duc ergo FE\(^5\) in KI et
productum divide per KP^6, et exibit IM, qui est para paralleli IH, qui est sinus 4^a us. Sicut igitur IH se habet ad IM, sic totus sinus rectus, scilicet KB, quod est 4^a aequinocitialis, se habet ad quandam partem sui, quam quae rimus. Ergo IH erit primum, quo tum proponebatur esse 4^m, et IM erit 2^m, KB 3^m: haec tria mihi nota sunt. Duc ergo KB in IM et productum divide per IH, et exibit quiddam, et est sinus cuiusdam portionis aequinocitialis; huius sinus quaeras circulum portionem, quae portio est differentia quae est inter ascensiones arietis in circulo directo et ascensiones eiusdem in circulo obliquo.

(139) Est igitur quod tu velit scire, quantum cum tota ariete elevatur de aequinocitiali in circulo obliquo apud Parisius? Accipe igitur //84rb// latitudinem regionis ibidem, scilicet 48 gra et 13; cuius invenias sinus, aequando pro duobus introitibus ut supra, et invenies illi m'a 50 2'a et 57 3'a. Deinde dictam latitudinem de 90 minue, et residui, scilicet 41 graduum et 47 minutorum, quaere sinus, et erit 99 m'a 56 2'a 41 tertia. Et erit istic secundus, prior autem primus; et est primus linea FE, secundus autem GE vel FK. - Deinde, cum ascensiones totius arietis velis, accipe declinationem totius arietis, quae est, ut in priori capitulo ad circulum directum dicebatur, 11 gradus 31 m'a et 36 2'a; cuius sinus etiam quaeras ut supra, et erit sicut prius 29 m'a 59 2'a et unum tertium; et iste sinus erit tertium, et est iste sinus linea KI. Postea istam declinationem de 90 minue, et residui, quod est 78 gra 28 m'a et 24 s'a, quaerae sinus, qui erit, sicut et supra ad circulum directum, 146 m'a 58 2'a 10 3'a; et iste sinus erit 4^u, qui designat per lineam parallelem aequinocitiali, quae est linea IH, quae est sinus residui declinationis gradus. - Cum igitur isti sinus in se invicem multiplicari et per invicem dividii debent, ideo omnes in easdem fractiones reducas; et erit primus in tertius 402657, et secundus 359801, et tertius 107941, et 4^us 529090. - Duc igitur primum in tertium, et exibunt in sextis 4346-3199237; quibus divisis per sinus secundum exibunt in tertius 120798, quia sexta remanentia sunt plus quam medietas divisoris. Quibus multiplicatis per 150°, quod est linea KB, exibunt in 4'is 18119700; quibus divisis per sinus 4^m exibunt in minutis 34 et remanent 130640, quae sunt 4^a; quibus reductis ad 5^a et divisis per 4^m sicut prius, exibunt 14; et remanent 431140, quibus iterum reductis ad sexta et divisis iterum per 4^m sicut prius, exibunt //84va// 49^{th} tertia, quia pro sextis remanentibus oportet accipere unum. - Sinus igitur inventus est <34 m'a> 1412 2'a et 49 tertia; cuius invenias circuli portionem, et erit 1313 gradus 11 m'a 55 2'a 17 3'a; et haec portio est differentia duarum ascensionum arietis, in circulo scilicet directo et obliquo.

(140) Hanc igitur portionem demas, sicut dicit canon, de ascensione arieti in circulo directo, scilicet de 27 gradibus 53 minutis et 50^{th} secundis, et remanent 14 gradus 41 m'a et 55^{15} 2'a et 43 3'a, et haec est
elevatio vel ascensionis arietis et piscium in circulo obliquo. (--- Then a piece on finding the ascensions of the other signs. The section concludes at the end of §141: ---) Si autem tabula in minutis cum hac operatione non concordat penitus, hoc est quia factum est ad Parisium, tabula autem ad 7'm clima est supra me-/84vb//dium eius; item et quia tabulae climatum compositae videntur esse super declinationem solis secundum Ptolomaeeum, sed ego operatum sum cum declinatione solis secundum Almoneum, quae vero est secundum quod dicit canon.

B, 89rb-vb. - Finding oblique ascensions of degrees of the ecliptic ("gradus aequales") beginning at Aries, by interpolation between previously computed values for integer signs. Criticism of linear interpolation.

- Corresponds to John of Sicily (P 170ra-b), who has a different example mixed with the paraphrase.

(168) Si vero reducere volueris: Postquam auctor docuit per gradus aequales invenire gradus ascensionum, nulla ascensionum supposita, docet hic consequenter, ascensione totius signi supposita, ascensiones alciuis partis determinatae illius signi zodiaci invenire. Et primo facit <hoc>, et secundo docet huissum conversam, cum dicit Si autem volueris convertere.

(169) Primo dicit sic: si volueris reducere gradus aequales in gradus ascensionum, id est si volueris [scire] invenire gradus aequinocitialis correspondentem gradibus zodiaci datis: si velis hoc per numerum calculando, scilicet abaque tabula, tunc gradus quot velis, scilicet aequales, multiplica in gradus elevationum signi eiusdem totius, suppl; et collec tum divide per 30, qui sunt gradus aequales cuiuslibet signi, et exibunt gradus ascensionum. Et si post divisionem remanescit aliquid dividendum, multiplica illud per 60, et productum divide ut prius per 30, et exibunt minuta; quibus ad gradus prius exunctes additis, habebis ascensiones graduum proppositorum, et minutorum, si cum gradibus aequalibus fuerint minuta.

Sint gradus aequales 20 gradus tauri et 20 m'a; quod reducatur ad m'a, et erunt 1220. Istud ergo multiplices per ascensionem totius tauri in minutis acceptam, quae sunt 1121, et exibunt in secundis 1367620; quae divididas per 30 gradus aequales, et exibunt secunda sicut prius, scilicet tot 45587; de decem autem remanentibus nihil cures, sed tot secunda, quo iam exeverunt, sunt ascensione graduum quasitorum, 20 //89va// scilicet tauri. Haec ergo ad gradus et minuta reducas, dividendo per 60, et exibunt in fine 12 gra et 39 m'a et 47 2'a; et haec sunt portio aequinocitialis qua elevatur ad 7'm clima cum 20 gradibus et 20 minutis tauri.

(170) Sed tamen, si² intraretur ad tabulas septimi climatis cum 20 gradibus tauri et 20 minutis, solum haberet 11 gradus et 58 m'a et 20 secunda, ita quo erratum est in operando per capitulum istud fere ad 40 minuta in proposito. - Causa autem erroris est quia in isto capitulo supponitur quod, quanta est ascensionis unius gradus signi alciuis, tanta sit et cuiuslibet alterius gradus illius signi. Quod manifeste falsum est, quia ascensioni prius gradus tauri est 33 m'a, ascensione autem ultimi gradus eiusdem est 43 m'a. - Quod autem aequalitas ascensionum singularum gradum hic supponatur, patet, quia³ vult quod gradus aequales signi dati multiplicentur per ascensiones totius signi illius, et quod productum per 30 gradus aequales dividatur. Quasi auctor sic argueret: sicut se habent 30 gradus
aequales signi ad gradus datos, sic ascensiones totius signi illius ad quandam partem suí; quae argumentatio non tenet nisi in proportione uniformi partium utrorum toto ad omnem. — Esto enim quod haec tria, scilicet A, B, C, valeant sex: tria igitur est unum totum et sex alium sibi correspondens. Si igitur A valet unum, B duo, et C 3, non valet sic arguere: "sicut se habet totum A, B, C ad duo, scilicet A, B, sic sex ad secundum, sed A, B, C habet se ad 2, scilicet A, B, in proportione sexuam et alia; ergo sex se habebant ad partem suis correspondentes, AB, in proportione sexuam et alia". Haec argumentatio concludit oppositum positio, quia concludit quod, sicut sex correspondent 3, scilicet A, B, C, sic duobus, scilicet A, B, cum tamen positum est A et B valere 3, quia A unum et B duo. Argumentatio autem supponit quodlibet illorum trium, scilicet A, B, C, valere duo; et ita consimiliter est in proposito. — Haec eadem est causa quare, in operando de sinibus per kardagas vel e converso, non provenit idem operando cum tabulis et sine tabulis. Et istud nota diligenter, quia hic latet manus, etiam magnis.

(171) Si autem volueris convertere: docet e converso ascensionis datae inveniare gradus sequales correspondentes. Dicit sic: multiplica gradus ascensionis datae in 30...

1ulla() 2si: in mg. 3quod a c. 4dati add. & del. 5finibus
ponas sub suo duplo, scilicet sub 4. Deinde sub prima figura, scilicet sub 5, invenias quendam digitum, et erit 4, qui ductus in duplatum et etiam semel in se evacuabit totum supraposuitum, praeter 9; quae dimittan-
tur pro nihil0, //100ra// quia digitus ultimo inventus, scilicet 4, non posset mutari in 5, ita quod radix ad unum augmentaretur [ad unum], nisi pro 50, sicut patet habenti modum extrahendi radicem. Et ideo dicas quod radix quadrati totius est 24, scilicet digitus ultimo inventus prae-
possit subduplo; quam serva.

Deinde per 150 minuta multiplices umbram datam, scilicet 20 puncta et 47 m'a, reigidendo eam primo ad minuta, et exibunt secunda scilicet1 187050; quae dividis per minuta radicis, quae sunt 1440, et exibunt 129 minuta; et remanent 1290 2'a, quibus reductis ad tertia et divisis iterum per mi-
nota radicis eiusdem, exibunt 54 2'a fere. Et haec minuta et secunda sunt [sinus] quidam sinus, cuius quaeras portionem, et erit fere 60 gradus; quam portionem minusa de 90, et residuum, scilicet 30 gradus, est altitudo solis ad horam illam in qua4 accipiebantur puncta umbrae. Est igitur solis altitudo 30 gradus, cum in umbra rei sunt 20 puncta et 47 m'a.

(229) Ad praecise autem operandum in istis, nota diligenter modum istum, quia accipies puncta umbrae cum suis minutis, et eorum, tam punctorum quam minutorum simul, quadratum hoc modo invenies: accipies enim primo puncta, et ea ducas in seipsa absque minutis, et habebis quadratum punctorum abs-
que minutis. Deinde etiam pro minutis, quae sunt cum punctis, addas punc-\ntis eiusdem unum, et aggregati sume5 quadratum. Deinde de utriusque quadra-
ti differentia tantam partem primo quadrato addas, quanta pars minuta quae
sunt cum //100rb// punctis5 sunt de 60; et quod provenierit7 est praecise quadratum totius umbrae.

Verbi gratia, umbra accepta prius fuit 20 punctorum et 47 minitorum. Accipe igitur quadratum de 20 punctis, scilicet 400 puncta; item accipe
quadratum 21 punctorum, quod est 441; de quorum differentia, quae est6 41 puncta, partem proportionalem accipias secundum proportionem 47 de 60. -
Sicut igitur 60 se habent ad 47, sic se debe[re]nt habere 41 ad quandam
partem sui, quae quaeritur. 60 igitur erit primum in quaerendo istam par-
tem, et 47 2'm, et 41 tertium: duc ergo secundum in tertium, et productum,
scilicet 1927 m'a, divide per primum; et exibunt 32 puncta et 7 m'a, quae
addas ad puncta quadrati primi, quod est minus, et erunt puncta quadrati
umbrae 432 <et 7 m'a.

Quibus addas 144, et habebis puncta 576> et cum hoc 7 m'a.

(230) De quibus extrahas radicem, et erit 24, nihil de punctis remanente.

De 7 autem minitur remanentibus sic caute operaberis: resolve ea in 2'a scilicet tot 420. Deinde accipe digitum ultimo inventum in extractione radicis, et eum praeponas8 duplato, per hunc modum "64". Deinde duc primum
in secundum, et productum ponas supra secundum, et deinde duc primum in
seipsum, per modum quo fecisti in extractione radicis; et provenierit 176.

Per quem numerum dividis illa 420 2'a, et exibunt 2 2'a, quae sunt ad-
denda ad radicem. Deinde secunda remanentia resolve9 in 4080 tertia, et
productum divide ut prius per 176, et exibunt 23 3' a, remanentibus 32 ter-
tiis, de quibus nihil est curandum. Radicem igitur qua-\-//100va\-//drati pro-
positi scias esse 24 puncta duo 2'a et 23 tertia.

Credo autem firmiter modum istum inveniendi radicem praecise cuiuslibet
numerorum inventum fuisset anno domini 1289 die beati Dominici.

(231) Per hanc radicem ad idem genus redactam, scilicet ad tertia, di-
vidas <quod provenerat> ex ductu umbrae in centumquinquaginta, ad 4' a red-
actum, et exibit 129 2'a, remanentibus tot 4'is scilicet 4625553; quibus
redactis ad tot quinta 277533180, ea dividis ut prius, et exibunt 53 2'a,
remanentibus adhuc quintis tot scilicet 2773601; quibus redactis ad sexta
divisum ut prius, exibunt 32 tertia, remanentibus tot sextis scilicet
523484, de quibus nihil cures. Est igitur sinus exiens11 in toto 129 m'a 53 2'a et 32 3'a. Per quem invenias eius circuli portionem, et erit aequando 59 gra 59 m'a et 29 2'a; quibus subtractis de 90 gradibus, quod est tota 4'a altitudinis, remanet altitudo solis, 30 gradus et solummodo 31 2'a. - De hac aequatione non oportet dubitare, quia praecisius non fiet.

1iam 2plam 3a. (=?) 4quam 5su(m)me 6ctorum 7ueniu(n)t 8erit a.c. 9p(ro)p. 10resoluta 11exerus

D, 111va-112ra. Diagram re-drawn from one at 112rb. - Machine for simulating the motion of Mercury's apogee. - The citations are certainly from the Theorica Planetarum Gerardi (e.g. København K.B., add.447,20, 53vb). There may also be points of touch with Campanus' Theoria: thus our manuscript figure looks like Campanus' (Benjamin & Toomer p.288 fig.14) except for the point-names and the epicycle; but Campanus' description (ibid., Sec.V 234ff) is not the source of ours, and does not specify mobile parts. - The phrase "motus mirabilis" is used by Campanus (V 53), but could be standard. The question is whether there is a pause when the motion changes its direction: ample references (since Arist.Phy8,262a12) ibid., p.405-7 n.10. Our author seems to think there is a pause. - About the first half of the paragraph was used by John of Sicily (P 192rb-va), who thereupon added or restored the epicycle; elsewhere he also supplemented the Mercury-section with gleanings from Campanus.

(296) Ad verificandum autem dicta auctoris Theoricae Planetarum de motu Mercurii mirabilis, cum imaginatio seu in-/111vb//tellectus eum de difficili capiat, fiat instrumentum ad hoc ostendendum facili-
ter hoc modo: fiat asser planus, in quo describatur circulus orbis signorum cum sua di-
ametro. Deinde, quia centrum huius circuli est centrum terrae, quod vocetur <A>, descri-
batur alius circulus infra circumam istum orbis signorum, quantaeque quantitatis tu-
vellis, supra punctum alicuod distans quantum velis a terra in diametro. Et1 vocetur cen-
trum illud B; circulus autem iste vocabitur aequans Mercurii, et vocetur iste circulus

CDEF. Et iste circulus est immobile, et ideo debes eum sicut dixi depingere, ut semper teneat eundem situm2. Deinde, de quacumque materia velis, facias unum circulum continentem solum unam lineam circularem et unam di-
ametrum, in qua diametro semper notari2 poterit centrum circuli illius;
et iste debet esse eiusmodem quantitatis cum circulo picto. Deinde in ipsa
diametro signetum punctum in tanta distantia a centro circuli, quanta est
distantia centri aequantis depicti a centro terrae. Deinde etiam in dia-
metro circuli depicti signetum punctum in tanta distantia a centro aequan-
tis, quanta est distantia centri aequantis a centro terrae, sicut est
punctum G. Deinde circulus separatus in puncto signato iuxta centrum suum
conclavetur cum assere praedicto in puncto iam signato iuxta centrum aequan-
tis: conclavetur, inquam, sic ut moveri possit. - Et videbis quod
centrum illius circuli mobilis in motu suo describit quendam parvum circ-
ulum, scilicet BHI, et transibit iste circulus per centrum //112ra// aequan-
tis, quod est B. Et4 circulus iste mobilis erit signum deferentis
Mercurii. - Deinde a centro terrae extant duae lineae, contingentes
utrique parvum circulum; et istae duae lineae includunt infra se portio-
nem quandam aequantis, quae portio est arcus CD, superius, et aliam infe-
rius, scilicet EF. - Et videbis quod aux deferentis numquam exit portio-
onem CD, sed semper movetur infra capita linearum contingentium; et per
consequens oppositum augis numquam exibit portionem EF. Et ideo dicit aec-
tor Theoricae quod centrum epicycli Mercurii, existens infra arcum EF, est
semper in opposito augis quamdiu ibi fuerit. - ***? sed huic adhuc non
consentit animus. Ideo ad hujus evidentiam ligetur unum filum in puncto
centi terrae, et ponatur ipsum filum super centrum differentis mobilis;
et semper cadet in augem necessario, ita quod, cum centrum deferentis in
parvo circulo venerit ad punctum <1> contactus circuli parvi cum alterutra
linearum, tunc aux deferentis est in puncto aequantis D. Deinde, filo iam
iacente [supra centrum de] supra centrum I deferentis, moveatur deferens
versus dexteram: diu etiam semper manebit centrum deferentis sub filo; et
per consequens aux deferentis manebit in eodem puncto vel respiciet idem
punctum aequantis. - Unde breviter per instrumentum istud verificare
poteris omnia dicta in Theorica de motu Mercurii.

1 et. 2 scitum 3 vocari 4 n. L.

\textit{E}, 122va-123ra. - Eclipses: finding lunar velocity between mean and
true syzygies. At the time of mean syzygy, the true sun and moon (or its
opposite) are at an elongation ("longitudo"); and from then till the time
of true syzygy, future or past, the moon has to traverse 13/12 of that e-
longation. To find a mean velocity for the moon over this interval, one
has to enter the table Toomer no.56 with some value for the moon's di-
stance from the apogee of the epicycle ("argumentum lunae"). This value
is now chosen as the value at mean syzygy, plus or minus half of 13/12 of
the elongation, for the reasons to be stated. - Our text may have a pre-
cursor in Albattani ch.42, or in the Lesser Almagest (Vat.Reg.lat.1261,40r),
which at this point seems to depend on the Toledo Tables, mentioning them
a little farther on. - John of Sicily keeps close to the phrasing, with
some abridgment (F 198ra-b, text in Pedersen 1978 p.88(D)); the "causa"
note is also in the Scripta Marsiliensis (M,115vb) in John's wording. A
later successor could be Peter of Dacia's Eclipsorium, §101 (Pedersen
(362) *Vel aliter:* docet invenire motum lunae aequalem in una hora praecisius quam prius. Et primo, quia tabula supposuit lunam non moveri nisi motu epicycli, corrigit errorem illum primo; et secundo, quia adhuc isto rectificato supponitur lunam motu proprio in epicyclo absque motu epicycli aequaliter moveri in orbe signorum; docet errorem illum corrigere, cum dicit *Inventum autom motu lunae.*

(363) Et quia errorem primum rectificare docet per additionem vel demutionem medietatis longitudinalis et duodecimae ad argumentum lunae vel ab argumento lunae, cum hoc contingit dupliciter fieri, ideo additionis illius vel demi-//122vb//nutionis dat duos modos.

Dicit igitur: *Vel aliter,* ut motum lunae aequalem invension in una hora subtilius et certius, longitudinalin quae fuerit inter sollem et lunam in duo media partire, id est divide, et //uni> me<<dietati>> eius addes suam duodeci

mam, id est, duodecimam solius medietatis adde ipsi medietati; et iste est modus primus. -- Vel longitudinalin cum 12'a dividas scilicet in duo media, et iste est modus secundus. -- *Et quod collectum fuerit,* scilicet in altero modorum duorum, adeo argumentum lunae si fuerit longitudinal solis, quia iam adhuc futura est vera coniunctio, vel ab eodem argumento minue, scilicet acceptum alterutro iustum modorum, si eadem longitudinal fuerit longitudinal lunae, cum id praeterit coniunctio vera. Et hoc erit argumentum lunae aequatum, per quod scilicet motum lunae aequalem in una hora debes invenire, scilicet intrando cum eo ut dictum est ad tabulam motus lunae aequalis in una hora, quae crescit per 6 gradus.

Causa autem quare, ad habendum motum lunae aequalem in una hora, oportet supra argumentum lunae addere, vel ab eodem subtrahere, medietatem longitudinalis et duodecimae, est haec, ut videtur mihi, quia luna feret tantum arcem epicycli in quolibet tempore dato deambulat, quantum centrum epicycli sui deferentis vel orbitis signorum. Et quia, completo toto motu longitudinalis et 12'mae, ponetur luna in secundum se nihil esse motam, nisi aliquid sibi (sc. argumento) adderetur; item, si tota longitudinal cum 12'a sibi adderetur, iam in tota longitudinem poneretur in orbe signorum plus vel minus moveri quam movetur, //123ra// quia minus movetur in auge quam ad 30 gradus distans ab auge -- loquor de motu suo in orbe signorum per motum centri epicycli -- et ideo, addendo argumentum lunae medietatem longitudinalis et 12'mae, ponemus lunam esse in puncto medio inter punctum epicycli, a quo movetur in initio motus centri epicycli per longitudinalin cum 12'mae, et punctum epicycli in quo erit in fine motus longitudinalis et 12'mae. Et ideo contingit ut, de quanto attribuitur sibi plus vel minus de motu ante medietatem longitudinalis et 12'mae percursum, de tanto minus vel plus et converso in medietate secunda longitudinalis et 12'mae sequetur eam moveri; et ita, de quanto ad medium erratum a principio, de tanto erratum a medio ad finem corrigetur, ut in fine mota sit quantum debet.

(364) Et istic, licet subtile, patitur adhuc defectum, quia supponitur lunam secundum se aequaliter moveri superius in epicyclo et inferius, dato quod epicycli motus circumscribatur: et ideo auctor, cum dicit *Inventum autem motu lunae,* docet errorem illum corrigere...

1 sup: in mg. 2 signo 3 e.u.m.: in mg.; undecim a.c. 4 hor<<a>> 5 et: adest saepius

F, 125va-126va. -- Solar eclipses: The lunar parallax ("diversitas aspectus", both in longitude and latitude) has been extracted from the tables (Toomer p.97ff.). It is now to be corrected for the moon's place on the epicycle, by entering the table of *aequatio* (Toomer no.79, "circulus"
brevis"), which yields minuta proportionalia (m) between 0 and 12. These are a measure of the moon's distance from the observer such that, if the parallax found is \(p \), then the correction is \(\pm \frac{p \cdot m}{12} \) (really \(\pm \frac{p \cdot m}{60} \), see below). - §379 concerns the argument with which to enter the aequatio-
table, and the terms used may be compared to Sample E with note. §380 dis-
cusses the starting-point of the correction (apogee or mean longitude: the
former according to the heading of the table Toomer no.72; cf.Toomer p.
100). - The discussion assumes a divisor of 12. This is censured by John
of Sicily, P 207va (text, Pedersen 1979 p.104), and both he and the Scrip-
ta Marsiliensis generally use 60. The sole exception is the passage cor-
responding to our §380 (John, P 201rb; Scripta, M 116rb), where all wit-
nesses show the value 12. At this point, then, both John and Scripta are
likely to depend on our text. - §379 corresponds to John, P 199rb-va,
with the normal value of 60 for the divisor.

(379) Si autem fuerit ultra vel infra: docet verificare diversitatem aspec-
tus utriusque pro loco lunae, in quocumque hora coniunctionis verae fuerit.
Dicit igitur quod, si luna fuerit ultra vel infra, id est, vel superius
vel inferius in epicyclo et non in alterutra longitudinum mediarum, //125
vb// tunc cum argumento lunae, scilicet aequato per additionem longitudi-
nis et 12'mae solis et lunae, tabulam aequationis eius, scilicet lunae,
ingredere, quae tabula est proximo post aspectus, parva et oblonga, ut
patet, et acceptis quae in directo eius inveneris minuta proportionalia,
et multiplicata ea in minutas longitudinis et latitudinis divisiem, et, sup-
ple, productum divide per 12, et quod inde provenierit minue unummodoque de
su genere, scilicet minuta longitudinis de longitudine et minuta latitu-
dinis de latitudine, minue, inquam, si fuerit argumentum in mediatet\(^1\) su-
periori epicycli, vel adde illud, si fuerit in mediatet\(^2\) inferiori; et
tunc habebis minuta latitudinis et longitudinis tertissima ad diversitatem
aspectus lunae in eadem hora, scilicet coniunctionis verae.

Nota primo hic quod argumentum, cum quo hic intrandum est pro minutis
proportionalibus, est argumentum aggregatum ex argumento primo invento ad
horam coniunctionis mediae et ex tota longitudinum cum 12'a, quia in vera
coniunctione tantum erit, si media coniunctio praecedat veram; vel istud
argumentum est illud quod remanserit post subtractionem totius longitudi-
nis et 12'mae ab argumento invento cum tempore coniunctionis mediae, si
coniunctio vera praecedat mediam. Argumentum enim lunae vel plus vel minus
erit ad coniunctionem veram quam ad coniunctionem mediam, si vera a media
differat, et maior vel minor de tanto arco epicycli, quantus \(<\) est arcus>
longitudinis cum sua 12'a: quoniam, quantum arcum luna pertransit in orbe
signorum motu centri epicycli, tantum arcum, modo minus, epicycli trans-
//126ra// it luna motu proprio in epicyclo. Et ideo pro inviendi descensu
lunae ab auge, qui descensae significatur per minuta proportionalia, in-
tramus cum argumento lunae ad coniunctionem veram. - Et quod istud quod
dixi est argumentum lunae ad coniunctionem veram, probe per tabulas argu-
menti lunae, argumento lunae, ad coniunctionem mediam invento, addendo vel
subtrahendo argumentum lunae inventum in tabulis argumenti medi lunae.

(380) Sed ego credo firmiter quod auctor hic loquitur contra rationem,
vel ego eum non intellego. Si enim tabula supponat lunam esse in longitudi-
dine media sui epicycli, ergo ad tabulam aequationis aspectus lunae non
est intrandum cum argumento lunae, cum illud computatur ab auge; sed sic
esset faciendum, si tabulae diversitatis aspectus supponerent lunam esse
in auge faciendy. - Item, si diversitas aspectus inventa et aequata pro
partibus horae et pro parte signi esset ad lunam existentem in longitudine
media epicycli, <sis> tunc luna esset in auge, multo debetur diversitas
aspectus esse minor. Sed secundum canonem eadem esset: quod patet, quia
dicit quod partem proportionalem, de qua dictum est, oportet minuere
a diversitate in utroque aspectu, si luna fuerit superius in epicyclo; sed
lunâ existente in auge nulla erit pars proportionalis, quia non erit ali-
quod minutum. - Item et manifeste patet quod pars illa proportionalis
diversitatis in utroque aspectu maior erit, luna magis distante ab auge.
Et sic sequetur quod, luna existente prope longitudinem mediam ad unum
gradum superius fere, ad medietatem erit diversitas in utroque aspectu
minor, //126rb// et ipsa etiam distante ad unum gradum a longitudine media
inferius, erit eadem diversitas plus quam in medietate maior quam quando
est in longitudine media: talem autem permutationem et tam grandem ita
subito accidere est inconveniens. - Item et, luna existente in opposito
augis, praecluse duplo maior erit diversitas in utroque aspectu quam in
longitudine media, <sed> in auge, sicut dictum est, <est> aequali<s>.
- Item ex dictis patet, si vera sunt quae dicit canon, quod maior erit dis-
versitas in utroque aspectu, luna existente in auge, quam prope longitudinem
mediam in sursum. - Quae omnia sunt absurda et contra rationem et con-
tra sensum.

Haec sunt quae me hic faciunt dubitare, et ideo, salvo iudicio melioris,
dicendum est quod tabulæ supponunt lunam esse in longitudine longiori, id
est in auge, quia hoc posito nullum accidet inconveniens.

Operandum autem est tunc isto modo, quia intrare oportet cum argumento
lunae ut prius ad tabulam aequationis diversitatis aspectus lunae; et il-
lud, quod ibi inventum fuerit de minitis proportionalibus, multiplicabis
in minuta longitudinis et latitudinis divisim, et productum dividendum
sicut prius per 12; et exibunt partes proportionales, quae semper addenda
sunt diversitatibus aspectum prius inventorum, scilicet quodlibet ad ali-
ud sui generis. - Et cum hoc dicto meo concordat titulus tabulæ diver-
sitatis aspectus ad 7. clima, si6 adveritas.

Istud7 autem passum, quicumque fueris, diligenter ponderes; et ponderan-
do examines utrum canoni vel mihi sit adhaerendum, quia si hic erretur,
graviissime errabitur. Nec9 video10 maius periculum in aliqua operatione
qua tangit //126va// eclipses quam hic: quia, si secundum viam canonis
inveniens quod sol totus eclipsatur vel eclipsari debet,11 operando secun-
dum viam meam non fiet eclipsis in 5., 6. vel 7. climate. Et ideo vides
utrum simplici dicto credendum sit magis quam rationibus.

G, 148rb. va. - Apparitions and occultations. Example of note formed
as an objection, cf. end of §6 above.

(496) Cum vero volueris scire orte: determinat hic de apparitione et oc-
cultatione planetarum. Et primo facit hoc in grossso, et secundo magis ex-
quisite, cum dicit Cum ergo hoc tibi placuerit.
(497) Dicit primo quod, cum volueris scire orte suasvis trium superi-
orum, quando praeternissus a sole incepert in manæ appaerere, considera
argumentum eius aequatum; quod si fuerit prope 20 gradus, erit planta
incipiens apparere, extens de sub radis solis; occultari autem incepit at-
que tegi sub radis, cum fuerit idem argumentum prope 340 gradus. Veneres
autem1 et Mercurii apparitio orientalis erit, cum fuerit argumentum eorum prope 20 gradus.

Contra diceres tu quod Venus et Mercurius, sicut et alii planetae, distant2 ab augibus epicyclorum suorum ad minus quam ad 180 gradus, per dicta semper apparent3 post solis occasum; quomodo igitur Venus et Mercurius apparebunt in oriente, cum ipsorum argumentum fuerit circa 20 gradus, sicut auctor hic dicit? //14va// Constat enim quod non videbuntur, antequam sol circa aliquot gradus fuerit sub horizonte; cum igitur videantur, hoc erit prope horizontem in occidente et non in oriente. - Dico quod ad istud, exponendo hoc quod dicitur 'in oriente' vel orientalis: pro oriente planetae5 et non oriente simpliciter totius caeli. Planeta enim inter augem et terminum aequationis maximeae per praehabita dicitur oriri: hic enim 'oriri' est a sole elongari. Et iste est ortus qui vocatur ortus heliacus; et tu arguas de ortu cosmico; et ideo non valuit instantia.

\[\text{immo solis}\]

\[\text{H}, 152rb-153ra. - Finding day-arc of Aldebaran from its declination, at the geographical latitude 48\degree 40' for the 7th climate. The declination of 14\degree 39' is computed according to the canon. Earlier on (146va,§483) Aldebaran had been assigned a declination of 14\degree 41', and other coordinates, from a table which is certainly Toomer no.82a, said in its heading to be valid for A.H.577 (cf. Poulle p.142 on John of Sicily); our §525 then updates the longitude for a time interval of "about 112 years" (cf.§5 above).

John of Sicily omitted this comment, perhaps because he would not commit himself on the precession (§15 above). He repeats the procedure of §523-4, §526, with the same example (P 217vb-218ra), but omits the self-correction of our §526 (cf.§12 above), stating only the correct result. The "demonstration" of §527 is also taken over by John, who still does not refer to a figure but remarks that the reason can be seen from the figure on oblique ascensions (cf. Sample A for figure and a similar procedure).

(522) Subdit igitur auctor: Quaere itaque sinus longitudinis planetae vel stellae fixae vel etc.: quaere igitur sinus declinationis4 Aldebaran, siclicet 14 graduum et 39 minutorum, et est 37 m'a 56 2'a et 3 <tertia, sive> 136563 tertia. Deinde declinationem istam stellae de 90 minuas, et residui, siclicet 75 graduum et 21 minutorum, queras sinus, et erit 145 m'a 7 s'a et 6 tertia, qui erit sinus residui longitudinis, id est declinationis, stellae; serva etiam eum. Considera quoque sinus latitudinis regionis, quae latitudo est apud 7'm clima 48 graduum et 40 m'orum2, siclicet circa medium eius; huius autem sinus est 112 m'a 37 2'a et 45 3'a; et eum sub primis duobus einitbus signa. Postea diminue latitudinem regionis de 90, et residui, siclicet 41 graduum et 20 minutorum, sinus, qui est 99 m'a 3 2'a et 45 3'a, sub aliis tribus nota, qui erit vocatus, supple, sinus residui latitudinis regionis.

(523) Multiplica itaque: praemissis necessariis ad propositum invetigandum, docet per ea propositum, siclicet moram stellae propositae supra terram, investigare. Et facit duo, quoniam primo docet invenire arcum sequinocitialis, quem dicit stella secum ab ortu suo ad eius occasum, et secundo ex eo elicit horas morae suae supra terram, cum dicit Divide igitur.
(524) Dicit primo: Multiplica itaque sinum latitudinis regionis in sinum longitūdinis; id est declinationis, stellae propositae ab aequinoctiali linea, //152va// et summam quae tibi provenerit, scilicet 5537156795, quae sunt 6'a, dīvide per sinum residui longitūinis stellae, qui est secundus sinus. Itemque, quod ea hac divisione provenerit, scilicet 105989 3'a - nec curabis aliquid de sextis residuis, scilicet 107481, cum sint minus medietate divisoris - duā in 150, quae sunt sinus totus, et numerum inde surgentem, scilicet 15898350, quae sunt 4'a, partire per sinum residui longitūdinis regionis, qui fuit ultimus; et sinus provenientis ex hac divisione, scilicet 44 minutorum 34 secundorum et 48 tertiorum, invenias circuiti portionem, et erit 17 gra et 25 m'a fere; quam portionem addas supra 180 gradus, cum longituđine stellae acceptae sit ab aequinoctiali septentrionalis; et quod fuerit post augmentation, id est additionem factam, est portione circuiti stellae, scilicet Aldebaran: portio, inquam, diūna, id est arcus qui de aequinoctiali elevatur ab ortu stellae ad eīus occasum; et erit 197 graduum et 25 minutorum.

Dīvideigit eam per 15, et habebis per quot horas aequales movetur super terram; et exponit se, dicens id est, quot horae aequales transeant ab ortu eius usque in insips occaśnum; et hoc ab initio huius capituli interdēbatur. - Et morabitur supra terram haec stella, quae est Aldebaran, ad medium 7°mi climatis per 13 horas et 10 m'a, supposito quod ipsa sit in fine vicesimi octavi tauri, sicut scribitur in tabula.

(525) Sed hoc non est verum hodie, quia a tempore verificationis stellārum positarum in tabula fluxerant circiter 112 anni, qui large valent tempus motus stellae per unum gradum. Et ita dicatur secure Aldebaran esse circa //152vb// finem 29'ni gradus tauri; et ita etiam trahere potes motum stellae cuīslibet, in dicta tabula positae, ad unum gradum ultra locum in quo inventitur in tabula.

(526) Et si advertere velis, comparando operationem istam ad id quod per instrumentum inventurus, invenies te errasse hoc modo operandi in 17 gradi bus et plus: et ideo, cum dicit auctor portionem sinus inventam addendam esse vel minuendam 180 gradibus, glosabis sic: portionem, duplicatam scilicet. - Cuius ratio est quia illa portio est arcus, secundum quem stella tardius oritur quam gradus zodiaci, in aequinoctiali; et ad tantundem arcum stella etiam tardius occidit quam gradus zodiaci, in aequinoctiali; et ideo oportet portionem inventam duplicari: istud diligenter nota. - Sic enim operando invenies arcum diurnum Aldebaran esse 214 graduum et 50 minutorum, qui valent 14 horas et 19 m'a.

(527) Et stat istud capitulum super quadam demonstratione duorum proces suum, quorum primus est: sicut se habet sinus residui declarationis stellae de 90 ad sinus declarationis stellae, sic se habet sinus latitudinis regionis ad quendam sinum 4'm. Et ideo sinus residui declarationis stellae est primus, et sinus declarationis stellae secundus, licet e converso ordinantur in littera, et sinus latitudinis regionis est tertius. Et ideo multiplicamus sinus declarationis stellae per sinus latitudinis regionis, tamquam secundum per tertium, et productum dividimus per sinus residui declarationis stellae de 90, tamquam per primum. Et exit quidam sinus 4'us; qui non est quaesitus, sed per ipsum, et sinus residui latitudinis regionis de 90, et per sinus totum, invenier sinu quaesitus. - Est enim secundus processus istic: sicut se habet sinus residui latitudinis regionis //153ra// de 90 ad sinus, qui in primo processu inventur, sic se habet sinus totus, scilicet 150 m'a, ad quendam quartum. Et ideo sinus in primo processu inventum multiplicamus per 150 m'a, [et] tamquam secundum per tertium, et productum dividimus per sinus residui latitudinis regionis de 90, tamquam per primum. Et exit sinus quidam, cuius quærimum portionem; et hanc portionem intelligeo esse arcum medium qui est inter stel-
lam cum est in horizonte, oriens vel occidens, et aequinoctialem.
Ita credo hic esse arguendum et intellegendum, nec alius mihi apparat.

1del()c()onis 2m'a 3latit. 4p(ro)u(er) 5l. add. 6-tudine 7-bartur 8val(et) 9reg():

17. Modern works cited:

Id.: *Petrí Philomenae de Dacia...opera... Corpus philosophorum Danicorum medii aevi X:1*. Kopenhagen 1983.

Pouill, E.: "John of Sicily". *Dictionary of scientific biography*.
